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Abstract. A model of F-centres in alkali halides, which relates absorption energies in F-bands to the dy-
namic parameters of host lattices, is proposed. According to this model, the electrons trapped in F-centres
are treated as classical particles with a proper mass m∗ = mε4

loc/ε2
∞ , m standing for the actual elec-

tron mass, εloc and ε∞ for local high frequency and optical dielectric constants, respectively. Hence, by
considering the trapped electrons as substitutional impurities of small mass, the dynamics of the lattice is
investigated by means of the theory of local modes with the assumption of isotopicity. A simple equation
allowing calculation of the local mode frequencies is obtained. Knowledge of the Debye frequency and of
transverse and longitudinal mode frequencies at the long wavelength limit is required. With this model,
F-band absorption energy is reasonably well accounted for.

PACS. 63.20.Pw Localized modes – 71.55.-i Impurity and defect levels – 78.40.Ha Other nonmetallic
inorganics

1 Introduction

Halide vacancies in ionic crystals originate localized posi-
tive extra-charges which can trap electrons when crystals
are excited by ionizing radiations. Electron centres thus
formed, called F-centres, have been investigated for many
years [1,2]. They have served as a testing-bench for various
methods of calculating the electronic structure of lattice
defects in ionic crystals. Consequently, many studies have
been engaged dealing with electronic wave functions and
energies of F-centres. These studies are grounded on mod-
els, usually referred to as static models, leaving out the
dynamics of the lattice coupled to electrons. The earliest
works treated the lattice as a continuum characterized by
low and high frequency dielectric constants [1,3–6] (con-
tinuum models). The F-centres were represented by means
of special potentials determined in a self-consistent way.
More realistic models were implemented by means of nu-
merical calculations. The lattices were treated as made
up of point-like ions and the wave functions of trapped
electrons were taken as superpositions of orbitals centred
on the nearest alkaline ions [7,8] (point-ion models). Im-
proved results were obtained by anti-symmetrizing these
wave-functions with that of the alkaline ion cores [9].

The numerical calculations spoken of showed that the
lattice surroundings of ground state F-centres are substan-
tially undeformed. Moreover, it was found that the ionic
crystal field determines the extent of the trapped elec-
tron wave-function which scales according to the lattice
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parameter a [9]. This explains the Mollwo-Ivey law which
maintains that the F-centre principal optical absorption
energy E can be connected to the lattice parameter by
means of a noteworthy power law relationship, that is,
E = Ca−n, where exponent n is to be determined by
experiments [2]. It is to be pointed out that systematic
deviations from the Mollwo-Ivey law become significant
for large cationic radii where exchange interactions are
large [10].

Contrary to the previously quoted studies, many other
theoretical investigations emphasize the electron-lattice
dynamics (dynamic lattice models). By considering the
coupling of the oscillating electron distributions with
the optical longitudinal modes, the F-band shapes, as
well as their dependence on temperature have been ex-
plained [11]. A different point of view on the dynamic lat-
tice problem is established by the configuration-coordinate
model which characterizes the interaction of electron cen-
tres with the lattice by an ad hoc vibrational coordinate
(configuration coordinate) [12].

This brief overview gives an idea of the role played by
F-centres in solid state physics. On the whole, the afore-
mentioned studies give a good qualitative and quantitative
account of F-centre properties, although some questions
are still to be answered in full. It is known that the av-
erage lattice frequency, which is coupled to the electronic
transitions, lies far below the frequency of the longitudi-
nal branch [13]. It follows that electrons must also cou-
ple to other-than-longitudinal optical modes. Moreover,
it remains to be explained the role of the local lattice
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modes in the electronic transitions. Actually, some issues
concerning the relation between the optical properties of
F-centres and lattice dynamics have not yet been explored.
In the classical picture, this matter appears simple. In-
deed, if trapped electron behave as classical particles of
small mass, then F-centres will originate local vibrational
modes whose frequencies lie far above the normal vibra-
tion spectra of host lattices. An external electromagnetic
field, resonantly coupled with these local modes, forces
electrons to perform large amplitude oscillations while nu-
clei remain frozen at their current positions. Thus, these
resonances, which supposedly form the absorption band
of F-centres, may be correlated to the lattice-dynamic
features by means of existing theoretical models. Given
the interest in this matter, it is advisable to investigate
such a classical system. Of course, a classical model raises
some problems since electron motion must be treated
quantum-mechanically. However, if a suitable representa-
tion of F-centres is found, there is hope of properly address
the investigation dealt with. In this case, the known the-
ory of local modes can be applied to the perturbed lattice.
The goal would be to show that the frequencies of local
modes originated by the trapped electrons are those of
photons absorbed in F-bands.

The basic tools for addressing the present investiga-
tion are the study of local modes in vibrational spectra
of perturbed lattices and the classical description of the
F-centres interacting with the host lattice. Owing to the
explorative nature of this investigation, the matter will be
dealt with using heuristic arguments and applying suit-
able simplifications. The specialized issues are dealt with
in dedicated sections of this paper. In Section 2, the local
mode frequency originated by a small mass defect in an
alkali halide crystal is calculated in the harmonic approx-
imation. Section 3 is concerned with the problem of the
classic representation of electrons trapped in F-centres.
In Section 4, the problem of ion polarization is briefly
discussed in order to account for local effects. Finally, in
Section 5, results are compared with experiments.

2 Local mode calculation

When impurity atoms are introduced into a crystal, local-
ized modes may appear. Their frequencies lie in ranges for-
bidden to normal modes of the unperturbed host crystal,
and their vibration amplitude decreases faster than expo-
nentially when the distance from the defect increases [14].
This leads to special features of the dependencies on fre-
quencies of scattering and absorption processes. In par-
ticular, absorption spectra in ionic crystals show peaks
corresponding to the local vibrations of the various cen-
tres. In the simplest case of a mono-atomic Debye lat-
tice constituted by atoms of mass Mh some of which are
isotopically (without changes of the force tensor) substi-
tuted by impurity atoms of mass MS, the local mode fre-
quency at the defect sites is ω = (Mh/MS)1/2 (3/5)1/2ωD,
where ωD stands for the Debye frequency [15]. This equa-
tion correctly predicts the ratio of local mode frequen-
cies originated by light impurities such as H− and D−

(U -centres) replacing anions also when applied to alkali
halides. Actually, the local modes dealt with have frequen-
cies larger than those of the normal mode spectrum and
the frequency ratio of absorbed photons is near the ra-
tio (MD/MH)1/2 of the isotope masses [16].

The simple mono-atomic model is, of course, unsuit-
able for predicting actual local mode frequencies in ionic
crystals, since ion oscillations have components in both
acoustic and optical branches. A powerful method based
on the Green function, which is suited to address this
kind of problems, has been developed [14,17,18]. In some
favourable circumstances, this method leads to approx-
imated analytical solutions. This occurs when the local
modes lie so largely separated from the normal mode spec-
trum that their amplitude vanishes within the distance
of nearest neighbours ions from defects [14,17]. This sec-
tion is concerned specifically with strongly localized modes
originated by very light substitutional impurities for which
the vibration frequency is expected to lie far above the
normal mode spectrum.

The equation of local modes has been derived in a de-
tailed way by Dawber and Elliot in reference [17]. In their
paper, the modes of vibration of isotopic defects were stud-
ied by considering the simplest case of a single mass defect
in cubic lattice. In this case, the eigenvalue equations for
the perturbed modes are reduced to consider a 3×3 diago-
nal matrix which give a threefold degenerate solutions for
the eigenvectors of the dynamic matrix, that is,

εiω
2

N

∑

k,f

|σXi (k, f)|2
ω2 (k, f) − ω2

= −1, (1)

where εi = (Mi −MS) /Mi, Mi standing for the mass
of ion of index i (i = 1, 2, ..s) and MS the mass of the
substitutional ion, ω the frequency of the local mode,
ω (k, f) the frequencies of the lattice modes of branch f
(f = 1, 2, ...3s) and wave vector k, N the number of lattice
cells and σXi (k, f) the x-component of the eigenvectors
of the dynamic matrix which satisfy the relations [19]

|σXi (k, f)|2 = |σY i (k, f)|2 = |σZi (k, f)|2 =
|σi (k, f)|2

3
(2)

and the normalization conditions
∑

j

σj (k, f) · σ∗
j (k, h) = δfh, (3)

∑

f

σi (k, f) · σ∗
j (k, f) = 3δi,j . (4)

The factor 3 appearing in equation (4) (which is to be
compared with equation (2.5) of reference [17]) is a con-
sequence of equation (2) and of the sum over the vector
components. Now, from equations (1–2), it follows

εiω
2

3N

∑

kf

|σi (k, f)|2
ω2 (k, f) − ω2

= −1,
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which, by taking into account equation (4) and that ω2 �
ω2 (k, f), can be re-written as

εi
3N

∑

kf

|σi (k, f)|2 ω2 (k, f) = (1 − εi)ω2. (5)

It is convenient to separate the sum over acoustic
modes from that over optical modes and to rewrite equa-
tion (5) by using different labels for the two ion species
of alkali halides. Let label α indicate one specie of sub-
stituted ions and β the other ion specie. So, equation (5)
becomes

εα
3N

∑

kfAC

|σα (k, fAC)|2 ω2 (k, fAC)

+
εα
3N

∑

k

|σαLO (k)|2 ω2
LO (k)

+
2εα
3N

∑

k

|σαTO (k)|2 ω2
TO (k) = (1 − εα)ω2, (6)

where labels AC, TO and LO mean acoustic, transverse
and longitudinal optical modes, respectively. The degen-
eration of optical transverse modes is accounted for by the
factor 2. The actual normal vibrations in crystals are very
complicated. Thus to obtain from equation (6) handy for-
mula, some crude simplifications are required. The more
conservative assumption is to consider the amplitudes of
vibration vectors as independent of f and k, both over the
acoustic and the optical branches, that is,

|σα (k, fAC)|2 = |σαAC |2 (7)

and
|σαLO (k)|2 = |σαTO (k)|2 = |σαOP |2 . (8)

A possible choice for the eigenvector normalization is

|σαAC |2 =
Mα

Mα +Mβ
|σαOP |2 =

Mβ

Mα +Mβ
(9)

and

|σβAC |2 =
Mβ

Mα +Mβ
|σβOP |2 =

Mα

Mα +Mβ
· (10)

Accordingly, when in equation (6) Mβ = 0, optical modes
vanish. Owing to equations (7–8), sums in equation (6)
apply only to the frequencies. For the acoustic modes, a
Debye dispersion law is assumed which has been proved
to be quite successful in thermodynamics [15,20]. Thus,
the sum over the acoustic modes becomes

∑

kf

|σα (k, fAC)|2 ω2 (k, fAC) = 3 |σαAC |2
∑

k

ω2 (k)

=
9N
5

Mα

Mα +Mβ
ω2

D,

where factor 3 accounts for the three acoustic branches. As
for optical modes, a flat dispersion law is assumed. This is
accurate for transverse modes, but for longitudinal modes

it involves an error on the order of 10% [19]. It follows
that

2 |σαTO|2
∑

k

ω2
TO (k) + |σαLO|2

∑

k

ω2
LO (k) =

N
Mβ

Mα +Mβ

(
2ω2

TO + ω2
LO

)
,

which allows equation (6) to be re-written as

εα

[
3
5Mαω

2
D + 2

3Mβ

(
ω2

TO + 1
2ω

2
LO

)]

Mα +Mβ
= (1 − εα)ω2. (11)

Finally, by taking into account that εα = 1−MS/Mα � 1
and 1 − εα = MS/Mα, equation (11) leads to

ω2 =
3
5
Mα

Mβ

µ

Ms
ω2

D +
2
3
µ

Ms

(
ω2

TO +
1
2
ω2

LO

)
, (12)

µ standing for the reduced ion mass MαMβ/ (Mα +Mβ).
In the limit of Mβ → 0, that is for monatomic crys-
tals, µ → 0 and µ/Mβ → 1. Thus, according to
equation (12), the local mode frequency becomes ω =
(3/5)1/2 (Mα/MS)1/2

ωD as expected.

3 The classic F-centre oscillator

According to the classical representation of photon emit-
ting or absorbing atomic systems, electrons are assumed to
lie at equilibrium positions within the atoms and to react
elastically to disturbances [21]. So, they perform forced
oscillations when exposed to electromagnetic radiations.
The amplitude and phase of these oscillations depend, ac-
cording to simple laws of mechanics, on the character-
istic frequency of the free oscillations, on their damping
factor and on the frequency of the electromagnetic ra-
diation. Maximum oscillation amplitude is attained at a
resonance whose frequency, owing to the damping forces,
is in general slightly different from the characteristic fre-
quency. Isolated systems have resonances determined only
by their internal structure. On the contrary, systems such
as F-centres have dynamic properties strongly affected by
interactions with the host medium. In these cases, reso-
nances must be determined by taking into account the
actual form of these interactions. If electrons behave as
classical particles, this problem could be addressed along
the lines of the local mode theory presented in Section 2.
However, the quantum mechanical treatment cannot be
avoided. Thus, to use equation (12), a suitable harmonic
model for F-centres must be assumed, that is,

ω2m∗
α −

∑

β

∂2U

∂uα∂uβ
δuβ = 0 (13)

where m∗ means a proper electron mass, δu the oscilla-
tion amplitude, ω the oscillation frequency corresponding
to the F-band transition and U = 1/2Kδu2 the poten-
tial energy. The associated elastic constant is K = ω2m∗
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which should be compared to the one resulting from equa-
tion (12) with MS = m∗, that is,

Kclass = ω2m∗ =
3
5
Mα

Mβ
µω2

D +
2
3
µ

(
ω2

TO +
1
2
ω2

LO

)
.

(14)
The foregoing arguments are based on the Ehrenfest the-
orem, which states that on the average the evolution of a
quantum system obeys classical laws, and on the hypoth-
esis that equation (12) is indeed what classical mechanics
predicts for the electron motion. Now, is the time to tackle
the quantum mechanical problem. The Hamiltonian of a
crystal containing F-centres is of the form [15,22]

H = HR +Hr + V (r,R) , (15)

where HR is the sum of the kinetic and potential energies
of the ions, Hr the kinetic energy of the F-centre electron
and V (r,R) its interaction energy with the ions. In re-
ality, the interaction among electrons should be treated
explicitly. But this is impracticable since too many elec-
tron coordinates would have to be taken into account.
Thus, to deal with these interactions, V (r,R) is assumed
to be a one-electron effective interaction energy. Interac-
tion among F-centres is assumed to be negligible. The
eigen-states of the Hamiltonian (15) can be searched for
in the usual way, along the lines of the adiabatic potential
method. Assuming the coordinates R of the ions to be
fixed, the eigenvalue equation

[Hr + V (r,R)]ϕl (r,R) = El (R)ϕl (r,R) (16)

gives the adiabatic potential El (R) for the lth electron
state. In this electronic state, the motion of the nuclear
system is determined by

[HR + El (R)] ζlv (R) = Elvζlv (R) . (17)

Thus, a quantum state of the whole system is specified
by the electron and phonon quantum numbers l and v,
respectively, so that the wave function takes the form

ψlv (r,R) = ϕl (r,R) ζ lv (R) , (18)

which is a good approximation for the stationary
states [22]. Now, in the presence of an exciting field,
the perturbation operator HI = e/cA · p (−e standing
for the electron charge) is to be added to the Hamilto-
nian (15) [23]. When the radiation field is coupled with
the F-centre electrons, the function of state may be writ-
ten as a superposition of wave-functions like the one given
in equation (18). Actually, the absorption consists of a se-
ries of narrow lines merging into a single broad band. Each
line involves a narrow set of phonon levels of quantum
numbers w for which the Bohr condition hν = Ebw −Eav

is satisfied, hν standing for the energy of the absorbed
photon and Ebw and Eav for the energies of the final and
initial states of the transition dealt with, respectively. At
zero K, only the lowest vibrational state ζa0 (R) is oc-
cupied and absorption takes place only within a narrow
band. This is the most favourable case for handling. In-
deed, provided the photon energy is not close to system

resonance, the perturbative procedure can be applied. It
follows that the wave-function of the perturbed F-centre is

Ψ (r,R, t) = ϕa (r,R) ζa0 (R) exp(−iEa0t/�)

+
∑

v

bv(t)ϕb (r,R) ζbv (R) exp(−iEbvt/�). (19)

The mean force, acting on the F-centre electrons during
the excitation with external fields, can be calculated by
averaging on Ψ the derivative of electron momentum P =
p + e/cA [23]. That is,

〈
dP
dt

〉
=

〈
Ψ

∣∣∣∣
dP
dt

+
e

c

dA
dt

∣∣∣∣Ψ
〉

=
〈
Ψ

∣∣∣∣
dP
dt

∣∣∣∣Ψ
〉
− eE,

(20)
E being the electric field of the exciting radiation. By
exploiting the hermitian character of the Hamiltonian H
with respect to the wave-function (18), the derivative of
momentum p can be written as [23]

dP
dt

= −m

�2
[H, [H, r]] .

In the lowest approximation order, equation (20) leads to
〈

dP
dt

〉
= −m

�2
(Eb − Ea)2 δue − eE, (21)

where (Eb − Ea) is the energy of the transition dealt with
and (see Appendix A),

δu =
−eE/m

(Eb − Ea)2 /�2 − ω2
· (22)

Consequently, equation (21) describes a forced harmonic
oscillator of elastic constant

K =
m

�2
(Eb − Ea)2 . (23)

Constant K thus defined still cannot be compared with
the Kclass of equation (14). Indeed, it is not known how
equations (14) and (23) account for the electron-electron
interactions. Therefore, some other considerations are re-
quired. Since this matter is difficult to handle, it will be
addressed by means of heuristic arguments. For this pur-
pose, it is convenient to subsume the electron-electron in-
teractions in a suitable local dielectric constant εloc. Now,
the problem at issue may be better illustrated by treating
the F-centre as an hydrogen system immersed in a medium
of dielectric constant εloc. By applying the procedure lead-
ing to equation (21), it is found that the frequency of the
electron transition is ω = ωV /ε

2
loc, where the “V ” label

means the “vacuum”, that is, the medium with εloc = 1.
This is tantamount to saying that ωV represents the oscil-
lation frequency in a medium made up by non-polarizable
ions. Thus, from equation (23) it follows that

ω = ωV /ε
2
loc =

√
K/m. (24)

Concerning the oscillation frequency of an object of
mass m, as given by the local mode theory, it is to be
pointed out that in the right member of equation (14)
only quantities not related to local features appear. Thus,
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Table 1. F-band absorption energies (eV) of F-centres in alkali halides with NaCl structures. Top values in boxes were calculated
by means of equation (34). The starred values are experimental figures measured at 5 K. Values in round brackets were measured
at room temperature. Data are taken from reference [1]. Values in square brackets are taken from reference [26].

F Cl Br I

Li
4.96
5.10*, [5.102]
(4.96)

2.80
[3.30]
(3.22)

/ /

Na
3.88
3.69*, [3.723]
(3.65)

2.85
2.75*, [2.770]
(2.67)

2.37
2.36*, [2.1]
(2.30)

2.04
/
(2.11)

K
2.81
[2.847]
(2.75)

2.21
2.30*, [2.313]
(2.20)

2.19
2.06*, [2.064]
(1.97)

1.84
1.86*, [1.875]
(1.81)

Rb
2.37
[2.428]
(2.43)

1.81
[2.050]
(1.98)

1.82
[1.857]
(1.72)

1.59
[1.708]
(1.60)

in place of εloc, the optical dielectric constant ε∞ is ac-
counted for. The dependence on ε∞ is expected to be dif-
ferent from that on εloc shown in equation (24). Indeed,
the inverse of ε2loc appears in this equation consequent to
quantum mechanics since the state of the system is defined
only by mutually commuting physical quantities. Thus, if
the electron is localized in a region of dimension δr, its
momentum goes as ∼1/δr. But, in a medium of dielec-
tric constant ε∞, the size of an atomic system goes as ε∞
(indeed the effective Bohr radius is given by a0 = ε∞aB).
This leads to δr ∼ ε∞. Therefore, kinetic energy, and thus
total energy, shows the dependence on 1/ε2∞. Of course,
this is not the case with the local mode theory because
the state of a classical system is defined by the contem-
porary assignments of r and p, that is, of a point in the
phase space. Thus, a weaker dependence of the kind 1/εα

∞
with α < 2 is expected. As a working hypothesis, it can
be assumed that

ωclass = ωV /ε∞ =
√
Kclass/m,

which leads to
ω =

√
ε2∞Kclass/ε4locm. (25)

In this way, it follows from equations (14), (24) and (25)
that

ε4loc

ε2∞
mω2 =

3
5
Mα

Mβ
µω2

D +
2
3
µ

(
ω2

TO +
1
2
ω2

LO

)
, (26)

which calls for mass m∗ = mε4loc/ε
2
∞ being introduced in

equation (14).

4 The effective dielectric constant

In Section 3, interactions of F-electrons with ion-electrons
have been subsumed under the effective dielectric con-
stant εloc which, owing to local effects, is in general differ-
ent from ε∞. Local effects include both local polarizations
and exchange interactions with electrons of nearest ions.
For simplicity’s sake, it can be assumed that exchange
interactions do not significantly affect the constant εloc.
This seems reasonable when alkali ions of small radius are
considered [4]. On the other hand, a rigorous investigation

of the local effects is not the purpose of this paper, nor is
it necessary. It is be sufficient to find an approximated re-
lation between εloc and ε∞ including a free parameter η to
be determined by means of fittings to experiments. Thus,
in calculations of Section 5 a simple relation of the form
εloc = η ε∞ will be adopted. To understand the meaning
of parameter η, it is useful to recall that ε∞ is a function
of α+ +α−, symbols α+ and α− standing for the polariz-
abilities of positive and negative ions respectively [20]. De-
pendence on α+ + α− is a consequence of the assumption
about uniformity of the electric field. In the case of opti-
cal fields, this assumption is reasonable if a region, smaller
than the wavelength of the field but larger than the lattice
parameter, is considered. On the contrary, in the case of
localized charges, the field can no longer be considered as
uniform. Indeed, electric potential changes greatly even at
a distance from the source of field as small as a few lat-
tice spacings. Thus, owing to proximity of F-electron to
the nearest positive ions, the role of α+ in εloc is expected
to be emphasized. However, if the actual number N+ of
nearest positive ions is less than the number N− of near-
est negative ions, the proximity effect may be counter-
balanced by the N+ to N− disparity. In this case, εloc

can be replaced with ε∞. This can occur in alkali halides
with a NaCl structure for which N+ = 6 and N− = 12.
As for the alkali halides with CsCl structure, for which
N+ = 8 and N− = 6, the inequality α+ < α− always
holds [20], so allowing for εloc < ε∞.

By anticipating the results of the fits, it is found η = 1
and η = 1/1.17 for NaCl and CsCl structures, respectively,
in agreement with the aforesaid expectations. More refined
equations for εloc are left out because they are merely
speculative in the present context. Further comment on
this matter will be made at the end of Section 5.

5 Results

The F-band absorption energies of alkali halides belong-
ing to NaCl structures are calculated by means of equa-
tion (26) with εloc = ε∞. The results obtained are shown
in Table 1. Values of ε∞ are reported in Appendix B,
the optical frequencies ωTO and ωLO are taken from
reference [24] and the Debye frequencies ωD from
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Table 2. F-band absorption energies (eV) of F-centres in al-
kali halides with CsCl structures. In boxes, the top values were
calculated by means of equation (34). The values in brackets
were measured at room temperature. Data are taken from ref-
erence [1].

Cl Br I

Cs
1.83
(2.06)

1.82
(1.84)

1.78
(1.58)

reference [25]. Each calculated value is associated with the
corresponding experimental figure. The starred values are
those measured at 5 K, the others in round brackets are
those measured at room temperature [1]. Values in square
brackets are taken from reference [26]. For these latter, no
information about temperature is available.

It can be seen that differences between theory and ex-
periments are on the order of 10%. In some cases the agree-
ment is better. When possible, comparison is to be made
with starred values. It is to be pointed out, in this con-
nection, that the present model does not account for the
effect of temperature on absorption energy. Actually, this
effect is related to the change in lattice frequencies origi-
nated by F-centres transitions [11]. In general, these fre-
quencies decrease during the absorption processes so that
the vibrational energy of the lattice decreases, thus allow-
ing F-centres to be excited with less energy. Owing to the
increase in phonon density, this effect becomes larger as
temperature increases.

In some cases, the Debye frequencies ωD are lacking
or difficult to be found in literature. This occurs for LiBr
and alkali halides with a CsCl structure. In these cases, the
reststralhen frequencies ωTO were utilized in place of the
Debye ones. This was done with some confidence because
the ratio of frequencies ωD and ωTO approaches unity as
their value decreases. Absorption energies for CsCl-like al-
kali halides were calculated using εloc = ε∞/1.17. Results
are given in Table 2 together with experimental figures.
The agreement is poorer than for NaCl structures. This
probably depends on an inadequate fitting to local effects.
In particular, exchange interactions may play a more sig-
nificant role in CsCl- than in NaCl-like crystals, owing
both to the larger alkaline ion radius and to the higher
N+ value.

In Table 3 are shown the ratios Eth/Eexp, where Eth

and Eexp mean the energies of absorbed photons as cal-
culated from equation (26) and found from experiments,
respectively. Experimental data were obtained from room
temperature measurements. It can be noted that for each
halide series the ratio Eth/Eexp shows a maximum in cor-
respondence to Na and K ions. To explain this behaviour,
two contrasting effects should be considered: the exchange
interactions effect and the local polarizations effect. The
former lowers the energies of electron states, thus caus-
ing an increase in transition energy and, consequently, a
decrease in Eth/Eexp. On the contrary, local polarization
causes an increase in Eth/Eexp as ε∞ increases. This is
due to the fact that the polarizabilities α± increase as
ionic radii increase [20], so that εloc is expected to in-
crease faster than ε∞. This latter effect is dominant for low

Table 3. Ratios of absorption energies Eth and Eexp obtained
from equation (34) (see Tab. 1) and from experiments at room
temperature, respectively.

Eth/Eexp F Cl Br I

Li 1 0.86 / /
Na 1.06 1.07 1.03 0.97
K 1.02 1 1.11 1.02
Rb 0.97 0.95 1.05 0.99

r+/r− ratios, while for large r+/r− ratios the exchange in-
teractions effect is prevalent.

6 Conclusions

A classical model is proposed for use in investigating
F-centres in alkali halides by means of the local mode
theory. The trapped electron is treated as an isotopic sub-
stitutional impurity with effective mass m∗ = mε4loc/ε

2∞,
m standing for the electron mass, εloc for an effective high
frequency dielectric constant accounting for local effects
and ε∞ for the usual optical dielectric constant. The vi-
brational spectrum of the lattice is simplified by using a
Debye dispersion law for the acoustic modes and a flat
dispersion law for the optical modes. The frequencies of
transverse and longitudinal optical modes are taken at the
long wavelength limit. With these assumptions, the local
mode theory is applied in the harmonic approximation.
This was done by means of the Green method developed
by Dawber and Elliot [17] which, in this particular case,
leads to a fairly simple equation for the frequency of the
local mode. It is found that this frequency depends on the
averages of optical and acoustic frequencies of the lattice.
By putting εloc = ε∞ for NaC-like crystals, the calculated
frequencies agree, within an error of about 10%, with those
of F-band photons. In some cases the agreement is closer.
In the case of CsCl-like crystals, for which εloc = ε∞/1.17
was chosen, the agreement is not as good. Perhaps, this is
due to an over-simplification of local effects. On the whole,
the results are satisfying, thus encouraging their extension
to crystals other than alkali halides.

Appendix A

To prove equation (22), it is to be taken into account that

〈ψbv |HI |ψa0〉 = e/cA · 〈ψbv |p|ψa0〉 =

i
eA
�c

· 〈ψbv |[H, r]|ψa0〉 = eE · 〈ψbv |r|ψa0〉 , (A.1)

where, in the Condon approximation [1],

〈ψbv |r|ψa0〉 = 〈ζbv|ζa0〉 〈ϕb |r|ϕa〉 = 〈ζbv|ζa0〉 rab .

Thus, according to perturbation theory [23], by
putting A (t) = A0 exp (−iωt)+c.c., F = e/cA0 ·p and by
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omitting the c.c. terms, the oscillation amplitude is found
to be

δu = −
[

Fba

Eb − Ea − �ω
rab +

F ∗
ba

Eb − Ea + �ω
r∗ab

]

×
∑

v

〈ζa0|ζbv〉 〈ζbv|ζa0〉 exp (−iωt) . (A.2)

In the case of a narrow band, this equation can be sim-
plified by extending the sum on the phononic quantum
number over the whole set of functions ζbv. Indeed, by
utilizing the completeness property

∑

v

〈ζa0|ζbv〉 〈ζbv|ζa0〉 = 1

and by taking into account equation (A.1), equation (A.2)
can be rewritten in the simplified form

δu = −e
[

E · rba

Eb − Ea − �ω
rab +

E · r∗ba
Eb − Ea + �ω

r∗ab

]
.

Now, since rab is parallel to the electric field, it is easy to
show that

E · rba rab = |rba|2 E,

which leads to

δu = − |rba|2 2 (Eb − Ea) /�2

(Eb − Ea)2 /�2 − ω2
eE.

Finally, by taking into account that the oscillator strength
of the F-band transition is near unity [26], that is,

fab = 2m |rba|2 (Eb − Ea) /�2 � 1,

the oscillation amplitude becomes

δu =
−eE/m

(Eb − Ea)2 /�2 − ω2
·

Appendix B

Table 4. Dielectric constants of the alkali halides consid-
ered in Tables 1 and 2. Labels (a), (b) and (c) indicate ref-
erences [19,24] and [27] respectively.

ε∞ F Cl Br I
Li 1.92 (a) 2.7 (b, c) / /
Na 1.79 (c) 2.25 (a, b) 2.69 (c) 2.91 (a, b)
K 1.83 (c) 2.13 (a) 2.33 (a) 2.69 (a, c)
Rb 1.9 (b) 2.19 (a, b, c) 2.33 (a, c) 2.63 (a, c)
Cs / 2.60 (a) 2.78 (a) 3.0 (b)
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